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Summary. It has been suggested that electro-kinetic coupling may be involved in the 
mechanism of the action potential and that there should therefore be both consequent 
volume flows and pressure changes associated with such excitation. In a previous paper, 
such measurements were reported in cells of Chara austral&, from which it is also known 
that during excitation there is an increase in KC1 permeability and an efflux of KC1. In 
this paper, a number of theoretical analyses have been considered and developed per- 
taining to such measurements and the time-dependent relationships between apparent 
measured volume flows, true volume flows and turgor pressure changes in cells in 
various experimental situations. Such volume flows are quantitatively explained primarily 
from the frictional coupling of water by both K + and C1- ions and to a lesser extent 
by the local osmotic flow owing to KC1 enhancement at the wall-membrane interface 
of the cell. The measured pressure changes of 12 • 10 -3 to 28 • 10 -3 atm during ex- 
citation are also correctly predicted as the result of such a volume outflow from the cell 
which behaves as a hydraulically leaky elastic cylinder and thereby drops in pressure. 
These conclusions then indicate that the volume flows and pressure changes measured 
are the incidental consequences of a change in membrane permeability and do not 
necessarily imply any electro-kinetic mechanism for the action potential itself. 

In  the preceding paper  (Barry,  1970), which will hencefor th  be referred 

to  as paper  I, measurements  were repor ted  of bo th  volume flows and pressure 

changes dur ing electrical exci tat ion in ceils of the giant a lga  Chara australis. 
Such flows and  pressure changes had,  however,  been predicted by  var ious 

advocates  of electro-kinetic models  for  the act ion potent ia l  (e.g., Teorell ,  

1958, 1959a, b, 1961, 1966; K o b a t a k e  & Fujita,  1964a, b). The  quest ion 
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England. 
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then arises as to whether such measured flows and pressure changes d~ 
imply an electro-osmotic mechanism for the action potential or whethe: 
they would have occurred anyway, independent of any such model. This wil 
be one of the main questions dealt with in this paper. 

In the first part of this paper, relationships will be derived betwee~ 
measured and actual volume flows across membranes, and subsequen 
changes in turgor pressure of the cells, to determine any necessary correc. 
tions which have to be applied because of the experimental techniques used 
Initially, the method of transcellular measurement of volume (primaril3 
water) flow will be investigated in detail both for ordinary transcellulal 
osmosis and for fast transient volume flows during an action potential. Th~ 
first analysis will be considered not only as a check on the validity of thc 
approach but also as a means of obtaining values of the volume elasticit3 
constant of living Characean cells from the experiments of Kamiya and 
Tazawa (1966) on turgor pressure and volume changes during osmosis. 
The subsequent analysis will then indicate the relationship between the 
measured flow and the actual action potential flow. 

In the latter part of this paper, theoretical predictions for both volume 
flows and pressure changes will be compared with those measured. Such 
predictions and calculations will then be used to determine whether the 
volume flows and pressure changes measured do imply one such electro- 
kinetic feedback model for the action potential or whether they may simply 
be explained as the incidental consequences of a change in solute perme- 
ability during excitation. 

All of the calculations in this paper were computed with a programmable 
Hewlett-Packard 9100A Calculator (Hewlett-Packard, Palo Alto, Calif.). 

Volume Flows and Pressure Changes During Ordinary Transcellular Osmosis 

In order to calculate the relationship between measured volume flow 
during ordinary transcellular osmosis and the true volume flow across 
the cell membranes, consider a ceil held transcellularly, as in Fig. 1, so that 
the areas in compartments (1) and (2) are A~ and A2, respectively. Then, 
if the solution in compartment (2) is changed to one of osmotic pressure ~, 
there will be an outflow J2 > J~ and the cell will decrease in volume ( < 1% 
for rigid plant cells), thus dropping in turgor pressure. The change in turgor 
pressure p will be related to the change in volume v of the cell (assuming 
that the cell deforms elastically; e.g., Kelly, Kohn & Dainty, 1963), by the 
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Fig. 1. A schematic diagram of the situation considered and used to calculate the total 
transcellular volume flow exactly and obtain an expression for the change in turgor 
pressure of the cell during transcellular osmosis. The cell is held transcellularly between 
two compartments. 1"1 and A1 represent the volume and area of that part of the 
cell in compartment 1, and similarly V 2 and A2 for the cell in compartment 2. Jx and Jz 
refer to the respective flows in the "directions indicated, n and P refer to the osmotic 
pressure of the external solution ancl the initial turgot pressure of the cell, respectively, 

whereas p refers to changes in the turgor pressure of the cell 

equation 

~V 

P =--fro (1) 

where Vo is the original volume and e is the elastic modulus of the cell. 

Since dv/dt = ( J 2 - J O ,  the change in turgor pressure will then be given 

at any later time t by the equation 

N o w  

and 

t 
B 

p= ~o--VTo ( 4 -  gl)dt. (2) 

,lz = Lpx A2 (re - p) (3) 

J~ = LpN A1 P (4) 

assuming that a (the reflection coefficient of the membrane) is 1 for the 

solute under consideration, and where L~N and L~,x, the endosmofic and 
exosmotic hydraulic conductivities of the membrane for inflows and out- 
flows, respectively, are defined separately since Kamiya and Tazawa (1956) 

found experimentally that LpN and Lpx are somewhat different in magnitude 

(Lpn/Lpx ~- 1.6). Hence, differentiating Eq. (2) and substituting for J1 and J2, 

LeNA 1 +LpxA2 ] d p =  a LexA 2 n p . (5) 
dt Vo LexA2 
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Integrating, since p = 0 when t = O, 

LexA2 g(1 - e  -~~ ) (6: 
P= LeNA 1 +LexA2 

where *0 represents the time constant for the cell turgor pressure to drop tc 

Lex A2 zr and is given by 
LeN AI + Lpx A2 

Vo 
Zo- ~(Lex A 2 +LENA1 ) . (7~ 

The total measured flow (i.e., the true volume flow into end 1 and the change 
in cell volume of end 1) is given by 

dV1 LeNLpxA 1 A 2 7c 
Jlq dt LesAI+L~,xA 2 [-LI"xA2~ 

from Eqs. (4)-(6), since 

V1 LeN A1 _] -t 
Vo LeNAI+LexA2J e ~o 

(8) 

dill=V1 dV=__d [ p V l ] _  VI dp 
dt V o dt dt 1 ~ ]  ~ dt" 

If LpN =Lpx =Le, A is proportional to V, and a negligible volume of the 
cell is in the stopper, then the second time-dependent term disappears and 

LeN Lex Aa A2 
so the total measured flow is equal to the true osmotic flow LENA1 +LexA2 

even though cell shrinkage is initially the main component of the total 
measured flow. This is equivalent to measuring the osmotic flow at effectively 
constant pressure. This of course does not take into account changes in 
osmotic pressure of the cell sap caused by the water flow. The same con- 
clusion was also derived by Dainty and Ginzburg (1964) with the same 
implicit assumptions from an argument based purely on steady state flow 
rates. 

Returning to a consideration of Eqs. (6) and (7), if A1 =A2 =A, and 
if the ratio of hydraulic conductivities Lm/Lex = p (Kamiya & Tazawa, 1956) 
and represents the polarity in water permeability, then Eqs. (6) and (7) may 
be simplified since 

where Lp is the average hydraulic coefficient for a symmetrically partitioned 
cell. Therefore from Eq. (6) 

p= rc(1-e ~~ ) (10) 
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where 

2p V o (11) 
zo = (p + 1)2 Lee  A " 

Thus the final steady state change in turgor pressure of a cell under an 
overall osmotic gradient ~ is given by 

7~ 

P= 0+---5-" (12) 

Now, from Eq. (1), the change in volume necessary to produce such a 
turgor pressure change is 

v p ~ (13) 
V o ~ e(p+l)  

so that 

vo 
- -  - -  ( 1 4 )  

a -  (p+l )  v 

Tazawa and Kamiya (1966) have measured the change in volume after the 
onset of osmosis. It can be calculated from their data that one of their 
cells under an overall gradient of 8.13 atm after 1 min decreased in length 
by 0.136 % and dropped in turgor pressure by 3.305 atm. Hence from Eq. (1), 

is 0.614 x 109 dynes.cm -2 (since 1 atm = 1.0132 x 106 dynes.cm-2), mak- 
ing the assumption as Kamiya and Tazawa did (based on Kamiya, Tazawa & 
Takata's 1963 experiments), that the relative volume change was approxi- 
mately four times the relative change in length. From Eq. (12), these measure- 
ments give p a value of 1.51 which is fairly close to the average value they 
obtained directly, for different cells, of 1.6 (Tazawa & Kamiya, 1965). 
For the cells which they used, Le - 1.10 x 10- 5 cm. sec- 1. atm - 1 (or 1.089 x 
10-31 cm 3. sec- l .dyne-3)  and a(avg.)-~0.250 ram; assuming p = 1.5, and 
taking ~ =0.6 x 109 dynes.era -2. 

2p a = 1.79 sec. 
%= e(p+ l)2 Lp 

Therefore, after 5 sec, the turgor change should be about 94 % of the 
total change, which compares with the observations Tazawa and Kamiya 
(1966) made that 80 to 90% of the total turgor change has been attained 
within the first 5 sec. This is good agreement considering possible uncer- 
tainties in e, a and L~. 

These results, therefore, seem to verify the approach and its assumptions 
and give an estimate of the elastic modulus of the walls of about 0.6 x 
10 9 dynes.cm -z, which is quite close to the range of values 0.2 to 0.4 x 
109 dynes .cm -z calculated (Appendix A) from the longitudinal modulus of 

24 J. Membrane Biol. 3 
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adult cells of Nitella obtained by loading the cell with a weight and measur 
ing its extension (Kamiya et al., 1963). Other measurements of e for Nitella 
using length changes and half times for length changes, have been mad. 
by Kelly, Kohn and Dainty (1963). For external osmotic pressures o 
between 0 and 5 atm, they reported values of e between 200 and 600 atm 
The true values are, however, approximately double these (J. Dainty 
personal communication) because in their paper they incorrectly assume( 
that 7e (the longitudinal) and 7r (the radial elastic moduli) were equal 
This means that the experiments of Kelly et al. (1963) indicate that e lies it 
the range 0.4 to 1.2 • 10  9 dynes.cm -2. 

Transcellular Volume Flows Resulting 
from a Transient Volume Outflow at One End of a Cell 

Normally the cell was held transcellularly in the same experimental 
arrangement as described in the last section and one end of the cell stimulated 
If volume flows accompany action potentials, such excitation shoulc 
produce an outflow of solute and water, j, per unit area at that end. The 
measured transceUular volume flow may be derived in a similar manneJ 
to that derived in the last section except that, instead of an osmotic pressur~ 
gradient, there is a volume flow jAz out of the cell in compartment (21 
during the action potential. In the actual calculations, j is considered a~, 
negative for a volume flow out of the cell. This will cause a drop p in the 
turgot pressure of the cell and a subsequent inflow of water J1 and J~ 
from each end of the ceil. The total inflow J will, however, now be given b) 

J=J1 +,12 =L~,u(A1 +A2)p. (15~ 

As before, the rate of change of pressure at any time, t, is given by 

dp_eA2 (j_LpN(A~+A2) ) 
dt Vo A2 P (16~) 

where now the only hydraulic permeability involved is the endosmotic one 
LpN. Since 

(p+ i) 
Leu - 2 Lv (17) 

from Eq. (9) and the definition of " p " ,  then 

dp_eA2 (j (p+I)(AI+A2) Lvp) (18) 
dt Vo 2 A 2  - 

wherej=j(t) and p =0 when t=0 .  
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The flow during an action potential is a continuous function which 
has a continuous derivative and hence may be represented by a Fourier 
series (Courant, 1937, pp. 439, 447). In fact, most of the contribution 
would come from a harmonic of frequency co, related to the time t,, for the 

7~ 
flow to reach a maximum by co =~-~-. As shown in Appendix C of paper I, 

the total flow j ( t )  may be expressed in terms of a Fourier sine series as 

j(t)= ~ j n , o s i n n c o t = I m a ~ n a r y  part ~ j,~e" ~"~ 
n = 0  / 1 = 0  

where i = ] / -  1. 

For convenience, n will be dropped so that j ( t )  will be written as j ( t ) =  
o0  

�9 i a ) t  imaginary part ~ j ~ e  . 
0 

Hence Eq. (18) becomes 

d t  = V o j ~ s i n c o t - f l L p p  (19) 

where 
(p+ 1)(A~ +A2) 

fl = 2 A  2 (20) 

by definition�9 Eq. (19) is solved in Appendix B to give 

o0 - - t  

cA2 ~ Jo, cos ~ [sin (co t - q~,~) + sin q~ e 'W-] 
P =  Vo o 

(21) 

Since 

24* 

vo 
�9 = e f l L p A 2 .  (23) 

Now the observed flow ( d V / d t )  is the sum of the volume flow through 
end (1) and the change in volume (shrinkage) of end (1); i.e., 

V 1 d p  
L p n A l P ~  ~ d t  ' 

�9 d V  zeA2  oo . - .  - t  
"" a t  --LeNA1--V-f-. ~ J ~ 1 7 6 1 7 6 1 7 6 1 6 2 1 7 6  

[ 1 ] 
q- ~ ~ j o ,  cocosq~ cos(cot-qbo~ ) -  coy sinr "-7-- . 

0 

L p + l  
p N - T L v -  AI~A 2 Lp, 

where 
r = tan - 109 z (22) 

and 
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Eq. (24) becomes (Appendix B) 

dV As A2 6A 
dt =Aa+A2 j AI+A 2 

A1A2 ~ -t 
As + Az V r l ~ o J o ,  sin(o,oLCOS(COt_(oo)_coscb~e---r j 

(251 

where 6.4 represents the area of the cell in the stopper. 

As the fractional area of the cell in the stopper becomes very small: 
i.e., as 

dV A1 A2 3A TO so -- 
A1 +A2 dt A1 +A2 j (26~ 

and if also the cell is held symmetrically so that A 1 =A2 =A, then 

dV A 
d t ~-2- j (271 

so that the apparent measured volume flow is exactly half the true flow, 
and is not altered at all in shape or phase. 

Normally, however, these conditions are not perfectly met and the 
apparent measured flow is slightly different from haft the actual flows 
by the error term on the right side of Eq. (25). Actually the error introduced 
by the second term on the right side of Eq. (25) has been calculated for 
various values of ~ for the main harmonics. It generally causes a delay 
of less than about 0.02 sec for cells longer than 5 cm with a stopper length 
of 1 era. It also causes a reduction in magnitude of the flow, which is 
generally less than 15 %. 

This analysis has dealt with a volume outflow during excitation. If, 
however, an action potential was to cause an inflow, then the analysis 
would be very similar except that the error term of Eq. (25) is slightly 
modified as fl must now be defined as 

(p+l )  (A~+A2) 
2p A 2 

An Analysis of Turgot Pressure Changes Resulting 
from Uniform Transient Volume Flows 

It will be assumed that the pressure change is purely caused by a volume 
outflow (primarily water), caused by some mechanism such as ion-water 
frictional coupling. It will be assumed that the cell is completely surrounded 
by a bathing solution and that the whole cell is stimulated instantaneously. 
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Fig. 2. The actual rate of change of turgor pressure, dP/dt ( a t m . s e c - l x  10 -3) and 
measured rate of change (owing to the time constant of the recording circuit), dP'/dt 
(atm. sec-1 x 10-3) calculated for a cell during an action potential, for Lp finite and zero. 
This is shown as a function of time, t (sec), and is calculated [Eqs. (35), (45) & (48)] 
for L p = l . 0 x  10-s c m . s e c - l ' a t m  -1 and L p = 0 .  The elastic constant e was taken as 
0.6 • 109 dynes.cm -2 (or 5.92 • 10 z arm), and the cell radius a as 0.06 cm. fl was taken 
as 1.25 and the time constant of the recording circuit was 0.27 sec. This calculation 
assumed a sinusoidal volume flow Jo which reached a maximum in 1.00 sec. It was also 
assumed that the maximum value of the volume flow was 1.0 nliter.sec -1, and the 
values of dP/dt and dP'/dt corresponding to other values of ]~ may be obtained, as 
indicated, by multiplying by the numerical value of Jo~ expressed in nli ter.sec-1. Negative 
volume flow is an outflow, and a negative rate of change of pressure is a decrease in the 
rate of change of turgor pressure. The computed time delays of the maximum rate of 

change of pressure are also shown 
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Fig. 3. The rate of change of turgor pressure dP/dt (atm. s e c - l x  10 -3) calculated for a 
cell during an action potential is shown as a function of time (sec) for various values 
of elastic constant ~ (dynes-cm-2x 109). e =0.3 x 10 .9 (curve a), 0.6 x 10 .9 (curve b), 
and 1.2 x 10 -9 (curve c) dynes.cm -2. The computed time delays of the maximum rates 
of change are also shown. These curves were calculated from Eq. (35) assuming a 
sinusoidal negative (outflow) volume flow with a maximum rate of 1.0 nl i ter .sec- i .cm-2 
reached in 1 sec. They are also based on the assumption that Lp = 1.0 x 10 -s  cm.sec -1. 
atm -1 and a=0 .06  cm. Again a negative value of dP/dt is considered as a decrease 

in the rate of change of turgor pressure of the cell 

T h e  ana lys i s  will be  the  s a m e  as t h a t  o f  the  p r e v i o u s  sec t ion  w i th  the  

fo l l owing  m o d i f i c a t i o n s .  T h e  t o t a l  v o l u m e  f l o w  will n o w  be  

J to ta l  = LeNA p (28) 

w h e r e  A is n o w  the  a r e a  of  the  who le  cell. T h e  ra te  of  c h a n g e  of  p r e s su re  

is n o w  g iven  b y  

d t Vo J,o sin a~ t - fl Lp p (29) 

whe re  a g a i n  j ( t )  has  been  e x p a n d e d  in a F o u r i e r  sine series a n d  n o w  

8= p+l  (3o) 
2 

Eq.  (29) is iden t ica l  to  Eq.  (19) if A is wr i t t en  f o r  A2 a n d  fl de f ined  as 

in Eq.  (30). 

H e n c e  the  so lu t i on  is 

"c~A ~ . -~ 
P = ~ 2, ~ J ,o cos q~ o, [sin (mt  - ~bo~) + sin ~b,o e --V-] (31) 
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Fig. 4. The rate of change of turgor pressure dP/dt (atm.sec-1 x 10 -3) calculated for a 
cell during an action potential as a function of time for various frequencies, co (radian. 
sec-1), of a sinusoidal volume flow Jr. co = z (curve a), ~/2 (curve b), and ~/4 (curve c) 
radian.sec -1. The elastic constant e was taken as 0.6• 10 9 dyne.cm -2 (or 0.59218x 
10 3 arm) and the other parameters were the same as those mentioned for Fig. 3. The 

computed time delays of the maximum rates are also shown 

where again 
4)̀ o = tan-  1 cot, (32) 

and  now 
vo 

z =  e fl Lp---------A" (33) 

Hence  
r - - t  

d p _ eA ~ J`o sin tko, [cos (o~ t - 4),o) - cos 4)o, e -z-]  (34) 
dt Vo o 

o r  

dp 1 / _ . . L  _1 ~ Jo, sin4)`orc~176 e@1" (35) 
dt ~flLv o 

Single ha rmonic  contr ibut ions  to  dp/dt are plot ted in Figs�9 2 and  3 for  

various values of e, and  ~o = n / 2  radians,  sec-1 (assuming m a x i m u m  flow 

reached in 1 sec) and  in Fig. 4 for  various values of o~. 

Figs. 2 -4  show the effect of hydraul ic  leakage in reducing the ampl i tude  

of the pressure change and  causing a phase shift, advancing the peak  

of the rate of change of pressure. 
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The Effect of  the Finite Time Constant 
o f  a Recording Circuit on Measured Pressure Transients 

Case L Hydraulic leakage Lp ~ O. The effect of the time constant of the 
recording circuit will now be analyzed. In particular, the effect of a filter 
condenser across (i.e., in parallel with) the chart recorder resistance will be 
examined. 

Assuming a constant current source and an overall constant of pro- 
portionality K relating the cell's pressure to the current output, 

Now 

and 

i ( t )=Kp( t ) .  (36) 

i~ = C dV (37) 
d t  

V i2 = ~ -  (38) 

where V is the voltage across the condenser, and i~ is the current going 
through the condenser and iz that going through the chart recorder resistance. 
Hence 

dV V . 
C --d-/-+ ~ - =  t ( t )=Kp (39) 

o r  

d i 2  . 
RC ---d-t- + ~2 = K p. (40) 

But i2 is the current going through the chart recorder and hence 

, i2 p =-~- (41) 

where p' is the uncorrected pressure calculated directly from the chart 
recorder output. 

Hence it is related to the actual pressure p by 

dp' ~ p ' =  p (42) 
d t z 2 T 2 

from Eqs. (40) and (41) where % = R C  is the time constant of the recording 
circuit. 

The solution of the homogeneous part of Eq. (42) is 

- - t  

p' = C 3 e -TiZ (43) 

where C3 is an arbitrary constant. 
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Substituting for p from Eq. (31), Eq. (42) becomes 
! oo - - t  

dP'dt ~'P----=z2 ~Avo @2 ~o'J'~ cos q~,[sin(c0 t -  q~o,) + sinq~o, e-7-] �9 (44) 

This is solved in Appendix C to give as the full solution 

dp' 1 ~j,osinq~o, {cos(cot-O,o-qb~,)-cos(Oo,+Oo,)e*2 } 
d t fl Lp 

-' }] cos~, {e T ~ (45) 
"t (,~2 .C) - e  

where 

f l = p + l  V o 2 [Eq. (30)], z = eflLp-------~ [Eq. (33)], 

q~,=tan-logz [Eq.(32)], and 0~=tan-logz2 [Eq.(46)] 

where z2 =RC is the time constant of the recording circuit. 

Eq. (45) has been used to calculate dp'/dt for single harmonics of 
j for different values of 0o, and ~,~, and a curve for one such harmonic with 

"i~ 2 =0.27 see and other typical experimental parameters is shown in Fig. 2. 
It effectively retards the peak of the signal by approximately "r and 

slightly reduces the peak value for z2 small. 

Case II. No hydraulic leakage, Lp =0. If there is no leakage (i.e., Lp =0), 
then 

d p _  e dV _ Ae 
dt V o dt Vo v ~j,~sincot (46) 

from Eq. (29). Therefore, from Eqs. (42) and (46) 

' 1 dp' Ae 
-~ - ~ j~ sin a~ t. (47) 

z 2 dt Voz 2 

As before, this may be solved for dp'/dt, with the condition that dp'/dt =0 
when t = 0, to give 

dp' = Ae ~j,ocosOo~[sin(ogt_O~,)+sinO,,e@ ] (48) 
dt Vo 

where again 0~, =tan -1 ~o~2 as in Eq. (46). 

Eqs. (46) and (48) have similarly been plotted (Fig. 2) for comparison 
with Eqs. (35) and (45) which take leakage into account. 

It may be seen, in fact, for typical values of Lp and e and for fast action 
potentials ( ~ ' p e a k  <2.0 see), that the leakage has just the effect of advancing 
the time for the peak of the volume flow rate and slightly reducing its 
magnitude (Fig. 2). 
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An Analysis of the Volume Flow Caused by Local Concentration Enhancemen 
in the Cell Wall During an Action Potential 

There is a large efflux of solute across the plasmalemma during ai 
action potential, and the solute will take a finite time to diffuse acrost 
the cell wall and into the external solution (e.g., Gaffey & Mullins, 1958) 
This enhanced local concentration at the membrane-wall interface wouk 

be expected to cause a local osmotic flow across the membrane. 
The effect may be calculated as follows. Consider a cell (with an are~ 

of 1.0 cm 2) during an action potential transferring solute such as KC 
from one side of the membrane to the other at a rate ~j,o sin cot, wher~ 

r  

j~ is the value of the maximum rate of solute transported in mole .sec-  
for each harmonic of frequency co. 

For simplicity, only the main harmonic of frequency co will be con. 
~r 

sidered, where now co = - -  and tm is the time taken for the action po. 
2 t,, 

tential to reach its peak. 

The following assumptions will be made to consider the effect fol 
typical cylindrical Chara cells. 

(1) The main contribution to the volume flow will be caused by con- 
centration changes in the cell wall, since there DK+ is about 2.5% of its, 
free solution value (e.g., Gaffey & Mullins, 1958). Similarly Dcl- is aboul 
0.25 % of its free solution value (Mailman & Mullins, 1966) in the cell wall. 
Hence DKc ~ will be between 5 • -7 and 5 x10-8 cm2.sec -1, and bot/q 

values will be used in the calculations. The reduction in solute at the internal 
membrane-solution interface will be neglected since it will be much smallei 

owing to the higher value of DKc~ there. 

(2) The cell wall will be considered as an infinite medium for short 
times, and no allowance will be made for the fact that it is finite and that 
the solute will diffuse much more quickly in the external solution. Provided 
D t/x 2 < 1, this will give a reasonable estimate of the actual effect. Assuming, 
in fact, that D - 5  x 10 -7 or 5 x 10  - 8  cm2.sec -1, t is 2 sec and the cell wall 
is 10 ~, then Dt/x 2 is in fact ---1.0 or 0.1, respectively. 

(3) It will also be assumed that for simplicity the leakage of KC1 back 
across the plasmalemma membrane may be neglected. 

(4) For mathematical convenience, the equations and boundary condi- 
tions will be taken as similar to those for an enhancement at the interior of a 
cylinder of radius a. This is because of the extra difficulties encountered 
in considering the situation as being either the exterior of a cylinder, or 
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a plane surface in an infinite medium. For short times (less than 10 to 20 sec) 
and a diffusion constant <2x l0-Scm2.sec-1 ,  the difference between 
considering diffusion away from a plane interface and either a concave or 
converse surface of a cylinder of radius at least 0.5 mm is negligible. This 
has been checked for transport number calculations and is shown in Fig. 9 
of Barry and Hope (1969a). Since the diffusion constants for KC1 in the 
cell wall are at least two orders of magnitude smaller than the free solution 
values used in their calculations, and the times considered are less than 2 sec, 
this approximation is completely justifiable. 

The diffusion equation is therefore: 

~32 c 1 ac 1 Oc 
-or~r zr r Or - D O t  (49) 

with the boundary condition 

D "~r a = Jo~ sin co t (50) 

with c representing the change in concentration and being 0 for t =0 and 
with the condition that c is finite for r = 0. 

The above equations have been solved in Appendix D to give, at r =a, 

c(a)= 2jo, + j__~ 
a co 2D i 

(i ~-)~.  I1 {a (-~-)~} ( - i  ~ - ) ~ . I  1 {a ( - i  ~-)�89 (51) 

co e -  D ~ 2  t/a2 

+ 2 ~ J~ a (0 2 ~./a" + co2) 

where Io and 11 refer to the hyperbolic Bessel functions of orders " 0 "  and 

"1" ,  respectively, i 2 = - 1 ,  ( + i ) * =  i+_l J1 (~,~) = 0 .  2 = i -+ ~, and ~m is a solution of 

Eq. (51) may be re-expressed in terms of the kindred Bessel functions 
Mo and M1 and 0o and 01 (see McLachian, 1955, pp. 137-141). The complex 
part of the expression then disappears leaving 

c(a)=2j,~ [ 1 + Mo[aVco/D] 

coa 2Vco o . M I [ a V - ~ "  ] 

�9 s in (co t+Oo[aV-~]-Ol[a] /~o- / -D]+4)  (52) 

CO oo e - o a 2  t/a2 -I 
+--~ 

a m= 1 ( ~  ~m/a4 + 092) " 
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For a uni-univalent electrolyte such as KC1, the volume flow will ther 
be given by 

J v = 2 a L p R T c ( a ) .  (531 

Calculations 

The volume flow was calculated assuming that the action potential 
reached a peak in 1.0 sec so that a~=rc/2 radian.sec -~. Two values of 
D were taken as 5.0 • 10-7 and 5.0 • 10- s cm2.sec-1,  a t m -  1; a was taken as 

0.05 cm and j,o as 650 • ~/4=511 pmole-sec-1 so that the net efflux given 

by i" J,o sin o~ t dr, which is 2J~/o9, was 650 pmoles. 
0 

The values of the Kindred functions were derived using the approxi- 
mations 

Log~o { ~ } " ~ 0 . 1 5 3 6 / z  

and 

rc 0.3534 _ 0.7854 rad ians  O~ z 

Table. The volume flow .Iv caused by local concentration enhancement in the cell wall during 
an action potential, shown as a function of time t. This assumed a sinusoidal KCI efflux 
as given below with a total efflux of 650 pmoles. The number of  zeros of J1 (am) used to 

obtain a convergence of  better than 10-s between terms in the series expressions 
e - D o ~ 2 t / a  2 

E (r q_ D2~4m/a4) is also given. 

t (sec) 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 
Efflux 0 187.9 347.1 453.5 490.9 453.5 347.1 187.9 0 
(pmoles �9 sec-1) 
Jv 0.001b0.055 0.146 0.243 0.326 0.381 0.396 0.368 0.298 
(nliter �9 sec-1) a 
No. of terms used 2,254 149 111 93 82 75 69 64 61 
in series 
Jv 0.001 b 0.171 0.455 0.761 1.026 1.199 1.245 1.155 0.938 
(nliter" sec-1) e 
No. of  terms used 380 289 245 218 198 184 172 163 
in series 

a D K c t ( C m 2 . s e c - 1 )  = 5 . 0  • 10 -7. 
b This small rounding-off error may come from the approximations used in evaluating 

Mo(z)/Ml(z ) and Oo(Z)--Ol(z ) and from cumulative rounding-off errors in the large 
numbers of values of a m used. 

e D~c1(cmZ.sec-1)=5.0 • 10 -8. 
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Fig. 5 (see table). The volume flow Jv (nliter'sec-1) caused by local concentration 
enhancement in the cell wall during an action potential, shown as a function of time 
t (sec). This assumed a sinusoidal KC1 efflux (pmole.sec -1) (also shown in the figure) 
with a total efflux of 650 pmoles. The details of the calculation are discussed in the text 

which were derived directly from the approximation formula given in 

MeLachlan (1955, pp. 227,228) for z>50.  In our case, z-~89 and 280 

for D = 5.0 x 10 - 7 and 5.0 x 10 - s cm 2 . see - 1, respectively. The first 40 values 

of the zeros of the equation Jl(~m) were obtained from Watson (1944), 

and the rest were approximated by assuming that the difference (%, - ~m- 1) - 
(even after the first 40 t e rms  [(~m--~m--_l)--n]<O.O001 or is <0.0001% 

of am). The summation was continued until the difference between con- 
secutive terms [of the whole last expression in Eq. (52)] was less than 10-s; 

the number of terms used in the computation are given in the Table. The 

results of these computations are given in the Table and shown in Fig. 5. 

A Correlation of Theoretical Predictions and Experimental Results 

The corrected average maximum rate of volume outflow for cells of 

Chara australis held transcellularly was found to be 0.88 _+0.11 nliter, sec-1. 
cm-  z (Barry, 1970). 
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Possible contributions to the volume flow 

Since a cell in equilibrium has no net volume flow, Jr, across its mem- 
branes, the turgot pressure of the elastic wall, P, is balanced against the 
somotic pressure difference,/-/f, between the sap and the external solution, 
so that following Kedem and Katchalsky (1958). 

J~ = 0 = L , ( P -  a(IIf-  11o) ) 1 (54) 

where a, the reflection coefficient of the membranes to the salt solution 
(mainly KC1), is approximately 1.0 in the resting state. During excitation 
there are changes in solute permeability, co, [Pclin particular increases (Hope 
& Findlay, 1964) and therefore PKcl will increase) a, and also A/1 (i.e.,//~ - / /o)  
and P. In this transient state, the volume flow outwards will be given 
approximately by 

Jt=Jv- L~fP= Lpfa AI-I + L~a O(AI1)- LpSP (55) 

where J, refers to the total transient volume flow and J, that resulting 
directly from the action potential; 6 a refers to a decrease in the reflection 
coefficient, 6(AII) to a drop in the effective local osmotic pressure across 
the cell membranes themselves, and 6P to a decrease in turgor pressure 
resulting from the volume flow itself. When the volume flow is measured 
transcellularly, however, this feedback caused by the pressure change itself 
is not measured. The reasons are completely analogous to the analysis 
and discussion surrounding Eq. (8). 

Since the reflection coefficient may be related to the solute perme- 
ability, w, by an equation of the form 

~ = 1 _  coVs 
Lp -COZ13 (56) 

similar to that given by Katchalsky and Kedem (1962), where the solute 
permeability co (moles cm -2 sec- l .a tm - 1) is related to the more conven- 
tional solute permeability coefficient Ps (cm-sec-1) by 

P~ =coR T (57) 

where Vs is the partial molar volume of the solute and Z~z refers to their 
term representing frictional drag of the solute (in this case, ions) on the 
water. 

During excitation, therefore, the change in reflection coefficient, 5a, 
may be related to the change in solute permeability, 6 co, by 

6a= - V s  6 
L; co- 6(coZ13). (58) 

1 This equation tacitly assumes that LPx=LpN=Lp, or that fl= 1. 
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The contribution of this change in reflection coefficient to the volume 
flow, J~, out of the ceU is from Eqs. (55) and (58) 

d~ = Lv ~ A 17 + Lp 6 (co Zx 3) All .  (59) 

Since the second term on the right side refers only to ion-water frictional 
interaction in the membrane, it may be replaced by the term V,a ~e,, 
where ~ is the flux of solute (e.g., in moles.unit area-l-sec-1),  ~ is the 
frictional coupling coefficient (e.g., in moles of water.mole of ions -1) 
and V,~ is the partial molar volume of water, so that Eq. (59) thus becomes 

Since, however, 

and 
All "~ RTACs 

(60) 

(61) 

(62) ~"~rcoRTACs, 

Eq. (60) may be written as 

J, =(V~+ ~ Fw) 6 09. RTACs (63) 

an equation showing that the flow owing to a change in the reflection coef- 
ficient is, as expected, composed of two terms: the first just owing to the 
volume of solute moving and the second to the volume of water being 
frictionally dragged with that solute. Hence Eq. (55) may be written in the 
form 

Jt=(Fs+ a Vw) rco. RTAC~+~r Lpr(AH)-Lp(SP (64) 

or from Eq. (62) 
Jt=(Vs + a V,) 7t~ + a Lp(AH)-  LprP . (65) 

Eq. (64) shows that changes in a and All  will tend to cause a volume 
outflow and are, for the case considered in this paper, caused by changes 
in reflection coefficient (excluding the frictional drag component), ion- 
water frictional interaction, and local concentration enhancement in the 
cell wall. As already shown, the first two contributions are in fact both 
parts of the full thermodynamic reflection coefficient, and have been 
kinetically separated to give greater insight into the mechanism of volume 
flow. In general, the change in P resulting from this volume flow will then 
tend to feed back to cause a reduction in the volume flow, but, as we dis- 
cussed on p. 338, the transcellular method of measurement actually measures 
the volume outflow at effectively constant pressure. The contribution of 
each of these components will now be considered in more detail. 
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Change in Reflection Coefficient 
(Excluding the Ion-Water Frictional Coupling Term) 

The contribution of this term has already been shown to be Vs ~ from 
Eq. (65), where ~ is the rate of efflux of KC1 at the peak of the action 
potential. 

However, Hope and Findlay (1964) and Coster (M. Sc. thesis, Univ. of 
Sydney, 1964) have both measured chloride effluxes from Chara australis 
during an action potential. Hope and Findlay found a net loss of about 
500 pmoles, cm-  2. action potential- 1 of chloride for Chara australis. They 
obtained this value directly from chloride flux experiments. Coster obtained 
a value for the net chloride efflux in a cell of Chara australis of about 
800 pmoles-cm - 2  .action potential-1. He calculated this from the change 
in C1- activity in the cytoplasm during excitation measured with a Ag-AgC1 
electrode. An average figure of 650 + 150 pmoles, cm-  2. action potential- 1 
will be taken for the following calculation. If it is further assumed that this 
efflux is composed mainly of a dominant sinusoidal harmonic of 1/4 period = 
1 sec, similar in time course to the potential transients observed, the rate 
of efflux at the peak of the action potential 7'~, will be related to the total 
efflux of KC1, ~,,  by 

%=~-~s 

so that ~ ,  = 511 pmoles, era-2, sec-1 (cf. the top graph of Fig. 5, calculated 
for a total efflux of 650 pmoles.cm-2.sec-1).  Since 17~=26.7 cm3.mole -1 
(Wirth, 1937), the contribution of this term will therefore only be 

=13.6 x 10 .9 cm 3. cm -z.  sec -1 

or  

---0.014 nliter, cm -2. sec -1. 

Ion- Water Frictional Interaction 

Since both K + and C1- ions move out together during an action po- 
tential, it would seem only logical that both will make a contribution to 
the water dragged by frictional interaction. This is almost equivalent to 
electrokinetic drag except that here we have no current and both K + and C1 - 
ions are moving in the same direction. It will therefore be assumed that 
the coefficient is the same for both ion species, and equal to the cation 
electro-osmotic coefficient in the resting state so that the contribution to 7~ 
in Eq. (65) will be double the electro-osmotic coefficient measured in the 
non-excited state for positive ions alone. Using the figure of 5.8 rditers. 
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coulomb -1 (Barry & Hope, 1969c), which implies that each ion drags with 
it about 31 moles of water, for the electro-osmotic coupling coefficient 
and the figure of 511 pmoles .cm-2.sec  -~ for the peak rate of KC1 efflux 
calculated in the previous section, the contribution of this component 
Je to the total volume flow rate from Eq. (65) will be given by 

Je=18 x 2x 31 x 511 x 1 0  - 1 2  cm 3 �9 c m  - 2 .  see -1 

so that 

J~=0.57 nliter �9 c m  - 2 .  s e c -  1. 

Local Concentration Enhancement 

The third possible contribution is similar in principle to the flows 
caused by local concentration enhancement during the transport number 
effect (Barry & Hope, 1969a, b). The volume flow, likely to be caused 
by such local concentration enhancement in the cell wall during an action 
potential, was calculated as stated on pp. 348-351. Two possible values of D~cl 
(wall) were taken as 5.0 x 10 -7 and 5.0 x 10 -8 cm2.sec -1 with the other 
parameters the same as in the previous sections. 

The results are shown in Fig. 5 for a postulated sinusoidal action po- 
tential. These were calculated for an efflux of 650 pmoles of KC1. As indi- 
cated in Fig. 5 and the Table, the maximum rates of flow will be 0.42 
and 1.3 nliter.see -1 for diffusion constants of 5 x 10 -7 and 5 x l0 -8 cm 2. 
sec- 1, respectively. There is, however, a time delay of about 0.5 see in both 
cases between the peak of the action potential flux and the predicted flow 
maximum, so that the actual contribution of this component after 1 sec, 
at the peak of the action potential, will only be between 0.34 and 1.1 nliter. 
cm-2.  sec- ~ for the two values of D~:cl chosen. However, the close correla- 
tion of the time course of the observed volume flows with the action po- 
tential curves, which will be further discussed in the section on time courses, 
precludes the possibility that this component is making a dominant contri- 
bution to the total volume flow. 

Summary 

It would seem that the primary contribution to the volume flow would 
be from the ion-water frictional coupling; e.g., for an efflux of about 
650 pmoles of KC1 per cm 2, the contribution of the frictional coupling 
would be about 0.57 nliter, sec- 1. cm-  2. 

25 J. Membrane Biol. 3 
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The secondary contribution would be about 0.01 nliter, sec-1, cm-2 foJ 
the solute flow part of the change in reflection coefficient, and up tc 
0.34 nliter.sec-1 .cm-2 or higher, depending on the value of the diffusior 
constant in the cell wall, D~c~, for local KC1 enhancement in the wall 

The feedback contribution produced by the drop in pressure itselt 
during the action potential is not part of the volume flow measured in 
transcellular experiments. Hence the total calculated volume flow for a 
KC1 efflux of 650 pmoles.cm -2 is up to about 0.92 nliter-sec -1 .cm -2 or so. 
Thus the calculated flows agree well with the corrected experimental flows 
of about 0.88 + 0.11 nliter, see- ~. era- 2. 

Time Course 

The correction for using a stopper of a finite length [Eq. (25)] should 
be taken into account when an analysis of the time course of the flows 
is being made. This was found to cause a delay of approximately 0.01 to 
0.02 sec for the cells used, and, as may be seen from the corrected values for 
the maximum rate of volume flows shown in Table 1 of paper I, the average 
maximum rate of volume flow lagged behind the action potential peak by 
0.17_+0.08 see. 

Thus in these measurements, the volume flow followed the time course 
of the action potential (i.e., the sum of both the plasmalemma and tonoplast 
action potentials) very closely. This is in contrast with the results of Kishi- 
moto and Ohkawa (1966), who recorded a delay of almost 2 sec between 
their action potential peak and their apparent maximum rate of volume flow. 
Both this time lag and the very low magnitude of their volume flows (approx- 
imately 1/10 of the magnitude of those obtained by the author for Chara 
and by Fensom (1966) for Nitella) suggest that the inertia of their system 
is a limiting factor in their experiments (with a time constant of the order 
of 5 see). 

Pressure Measurements During an Action Potential 
and Their Relationship to Volume Flow 

From the value of e of 0.6 x 19-9 cm 2. dyne-1 obtained from the experi- 
ments of Tazawa and Kamiya (1966) on Nitella flexilis, and from the 
action potential volume flows already mentioned, Eq. (35) and Figs. 2 and 3 
would predict maximum rates of change of pressure from about 13 • 10-3 to 
21 x l0 -3 a t m . s e c - l . c m  -2 of cell area. These should be compared with 
rates of change of pressure determined experimentally of 9 x 10 -3 to 
62 x 10 -3 atm.sec -1 .era -2 of cell area (see Table 2 of paper I). 
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The validity of using such a value of 8 is further supported by the 
agreement of the predicted time lead of the actual pressure rate peak of 
+0.02 to +0.31 see (Fig. 4, considering values of %p varying from 0.5 to 
2.0 see) with the experimentally determined ones (Table 2 of paper I) of 
-0 .8  to +0.6 with an average value of +0.09 +0.07. A decrease in ~ from 
the value assumed would increase the time lead and the magnitude of the 
pressure change as indicated in Fig. 3. 

Thus the turgor pressure change may simply be explained as the result of 
the volume outflow from a leaky elastic cell wall cylinder enclosing a 
membrane. 

Discussion of Electrokinetic Models for the Action Potential 
in the Light of the Measurements of Volume Flow 

and Pressure Changes Made during Them 

The Teorell Model. Teorell (1958, 1959a, b, 1962) has proposed an 
electro-osmotic model for the action potential. He considers the five fol- 
lowing equations as the basis of his membrane-oscillator model: 

V= -SP  +rE (electro-osmotic flow velocity equation), (66) 

E=IR (Ohm's law), (67) 

R ~176 =f(V) (resistance-flow velocity relation), (68) 

dR 
d t = K (R ~~ - R) (time delay function), (69) 

and 
dP 

V= q ~ (geometry requirement) (70) 

where V is the water flow velocity, S the hydraulic permeability, t the 
electro-osmotic permeability constant, R ~ the steady state resistance, q a 
constant dependent on the geometry of the system, K a constant parameter, 
with the other terms already defined. 

In a later modification of his model (e.g., Teorell, 1966), he includes 
two further equations to take into account hydraulic leakage via an addi- 
tional water pathway. However, the essential features of his model can be 
understood by considering Eqs. (66)-(70) and are as follows. Initially the con- 
centration profile through the membrane is linear. Then, as a stimulating 
current passes through the membrane, the resulting electro-osmotic flow 
will cause the concentration to decrease to form a concave profile. This will 
cause an increase in resistance resulting in an increase in the change in p.d. 

25* 
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caused by the current pulse itself. This increase in p.d., he says, should ther 
in turn increase the electro-osmotic flow. This volume flow will, however 
increase the pressure difference [Eq. (70)] until it equals the electro-osmotic 
force, thus causing the flow to drop to zero. Then diffusion will cause the 
profile to change back towards a linear profile as indicated by Eq. (69) 
This would cause the electro-osmotic component to decrease and the p.d 
would drop in turn. 

The Kobatake-Fujita Model. A similar model has also been proposed 
by Kobatake and Fujita (1964a, b). They, however, formulated the electro- 
kinetic coupling in a different way and proposed a different restoring force. 

They considered the physical situation inside a capillary and wrote 
down the hydrodynamic Navier-Stokes equation for the equation of motion. 
This related the velocity at each point with the pressure, potential and 
concentration. They considered a fixed-charge concentration at the internal 
surface of each capillary and, assuming the applicability of the Boltzmann 
equation, calculated the charge distribution inside each pore. This distribu- 
tion was incorporated into their original equation of motion. Then using 
conservation of mass and charge equations, together with the pressure 
change caused by the water flow into the external chambers, they showed 
that such a system could be stimulated to cause an oscillatory phenomena 
with this pressure as the restoring force. 

Objections to Both Models. Qualitatively the sequence of events suggested 
by Teorell's model outlined above differs from the situation found in Chara 
cells where, ~ there were changes in the concentration profile in the mem- 
brane, the depolarizing pulse would tend to cause the profile to become more 
convex. On Teorell's model, this would decrease the resistance and instead 
of increasing the p.d. would decrease it, therefore producing a negative 
rather than a positive feedback required at the onset of an action potential. 

Also in Eq. (66), Teorell (e.g., 1958, 1966) does not consider possible 
changes in reflection coefficient and assumes that the electro-osmotic 
coupling coefficient as he defines it is constant. If both cations and anions 
contribute to the ion-water coupling during excitation, any electro-osmotic 
movement will considerably underestimate the water flow dragged by both 
ion species. 

In defense of Teorell's model, it should be said that he has an artificial 
membrane oscillator (Teorell, 1959a, 1962) which does obey all his equations 
and exhibits concomitant volume flows and pressure changes during action 
potentials. However, justification is still needed for the application of the 
resistance-flow velocity relation and the restoring force equation [Eqs. (68) 
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and (69)], which hold for his 7,000-A pores, to biological membranes with 
cation pores or channels, where anions tend to be excluded and concen- 
trations are not likely to change significantly. 

Kobatake and Fujita's (1964a, b) model, on the other hand, neglects 
hydraulic leakage and also suffers, as far as its application to biological 
membranes is concerned, since it requires large pores as well. 

Neither model as it stands can explain the transient increase in anion 
conductance during excitation, and would require further modification to 
take such an effect into account. 

Discussion 

In both the models of Teorell and of Kobatake and Fujita, the basic 
mechanism proposed for the action potential hinges on a change in pore con- 
centration, owing to electro-osmosis, followed by a change in electro- 
osmosis again to give a positive feedback system. Although these models 
have been of value in suggesting the presence of volume flows and pressure 
changes accompanying action potentials, neither in its present form appears 
to be applicable to giant algal cells. 

However, the semi-empirical equations, which certainly do apply for 
volume flow in plant cells during excitation, may be written as follows. 

Jt=Jo-L,p=(V~+eV, o)RTACs.fo)+eLpRT. 6(AC3-Lpp (71) 

dp eA 
d t = Vo (Jr- Lp p) (72) 

where these equations are equivalent to Eqs. (64) and (29) and where the 
symbols are as previously defined. 

There would seem to be two possible mechanisms for the transient 
nature of the action potential. 

Pressure-Volume Flow Feedback System 

In this case, the pressure might be considered as a restoring force inter- 
acting with the volume flow to cause a positive feedback oscillatory system 
if the change in solute permeability (e.g., C1- permeability), was itself 
a particular function, F(J~), of the total volume flow. 

That is, if 
3 co = F (J,) (73) 
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such that 

with 

as, for example, 

dF d2F ^ 
d)~ >0 but --d-f--t <u 

F(Jt) = 0 when Jt = 0 

~o9=5O9o(1--e -Jt/k) 

where 6co0 and K are constants, then Eqs. (71) and (72) combined with 
Eq. (73) would constitute a feedback system of equations capable of pro- 
ducing oscillations in solute permeability, volume flow and turgot pressure, 
provided the system was initiated, for example, by an electro-osmotic 
water flow in the appropriate direction. If this was the true mechanism, it 
would also differ from the other models in that it does not require the 
choise of any particular electro-osmotic model. 

An Independent Solute Permeability System 

If there was no coupling between volume flows and solute permeability, 
then the observed transient oscillation in both pressure and volume flow 
could still be the natural result of an unrelated transient change in solute 
permeability as discussed so far in this paper. This would be the case 
if the permeability change was either part of, or resulted from, a closed 
electro-structural feedback loop. 

In conclusion, it may be said that during an action potential there is a 
volume outflow of about 3 nliter.cm -2, with a peak rate of about 0.88 _+ 
0.11 nliter.cm-2.sec -1 (Paper I), which is primarily caused by ion-water 
interaction coupling and to a lesser extent by local osmosis owing to the 
efflux of KC1, itself resulting from a transient increase in effective KC1 
permeability (primarily owing to an increase in C1- permeability). 

There is also a pressure change measured as about 12 to 26 • 10 -3 arm 
with a peak rate of 9 to 36 x 10-3 atm-sec-a. This is caused by the volume 
outflow from the cell, which behaves as a leaky elastic cylinder (e-~0.6 x 
109 dynes.cm-Z), and thereby drops in pressure. 

Although, as predicted by the various electro-kinetic models, there 
are volume flows and pressure changes during action potentials in plant 
cells, the calculations and discussions given in this paper indicate that 
such volume flows and pressure changes may be incidental consequences of 
a change in membrane potential and do not necessarily imply an electro- 
kinetic mechanism for the action potential itself. 
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These results indicate tha t  vo lume flow and  pressure changes m a y  

well be the mechanisms for  the act ion of some plants and  give some teleo- 

logical reason for  the presence of the act ion potent ia l  at  least in some 

plants,  e.g., Venus fly t rap,  Mimosa and  Eloedea. In  part icular ,  Allen (1969) 

has shown that  there  is a large efflux of K § f ro m  the cells in the "ac t ive  

r e g i o n "  of Mimosa and  p roposed  some t ransient  change in their  semi- 

permeabi l i ty  as the cause for  a loss in turgor .  
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Appendix A 

To Derive an Expression Relating the Longitudinal Modulus 
of Elasticity with the Volume Modulus 
Defined by Eq. (1) for the Whole Cell 

The actual tensions per unit area in the wall owing to the pressure inside the cell 
may easily be shown to be given by (e.g., Kamiya, Tazawa & Takata, 1963): 

Pa 
Tt= 2d (A.1) 

Pa 
T~- d (A.2) 

where Tt and T~ are the longitudinal and transverse tensions per unit area, P is the turgor 
pressure of the cell, a is the radius and d is the thickness of the wall. 

By definition, the longitudinal and transverse elastic moduli (~'t and ~,~) are given 
by Tazawa and Kamiya (1965) as 

and 

At  1 

t 7t 
(Tt - a T~) (A.3) 

Aa 1 
- - = - -  ( T , - a  Tt) (A.4) 

a T, 

where t is the length of the cell, A t and A a are the changes in length and radius and a 
is the "apparent" Poisson's ratio (defined as the ratio of the fractional change in width 
to the fractional change in length when a strip of cell wall is stretched). 
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Since the volume of the cell, V, is given by 

V=~ca2t ,  

then 
AV 2Aa A? 
V a E 

for small changes in volume. 

Substituting from Eqs. (A.1)-(A.4) 

A V - P a  dy t 

where fl has been defined as the ratio of 7J~'t. 
From the definition of ~ from Eq. (A.1), 

AV 
t'=8 V" 

(A.5) 

(A.6) 

(A.7) 

Comparing with Eq. (A.7), 

2fld yt (A.8) 
a [ ( 4 + f l ) - 2 c r ( l + f l ) ]  

Kamiya etal. [(1963) (for a fully grown cell of Nitella flexilis, d=7.7 x 10-amm, 
a = 0.195 ram)] found that, by stretching this cell with appropriate weights, its longitudinal 
modulus of elasticity varied between 4 and 7 x 10 9 dynes.cm -2. Tazawa and Kamiya 
(1965) have calculated from the data of the previous authors that fl=3.3 and ~r=0.3. 
Substituting all these values into Eq. (A.8) gives e as between 0.2 and 0.4 • 10 9 dynes, cm-Z. 

Appendix B 

The Solution of  the Equation Relating Measured Volume Flow 
with Actual Volume Flow 

To solve Eq. (19), 

~ ) dt = 11o j,osincot-flLpp (B.1) 

where p = 0 when t =0. 
Rewriting in terms of exponentials and only considering the imaginary part of the 

particular solution, Eq. (B.1) becomes 

dp eA2(~o.eiO~ t L ) 
dt = Vo j,, - f l  pp . (B.2) 

The solution of the homogeneous equation may be written down immediately as 

- - t  

p = C1 e -z -  (B.3) 

where C1 is an arbitrary constant and 

z - Vo (B.4) 
efl LpA2 " 



Volume Flows and Action Potentials. II 363 

The particular solution of Eq. (B.4) may be obtained by trying a trial solution 

at) 

p = ~ ,  C~ e ~' (B.5) 
0 

where C~ and cr are constants to be determined. Substituting into Eq. (B.4), this becomes 

8A2 �9 i~t L C ~ .  
E~C~e~t= Vo (Z J~ - f l  pZ  ~e 

Since this must be identically true for all t, each ~ must equal io  and hence 

 Aejo 
K 

e, A 2 zjo, 
�9 C ~ -  V o ( l + i o 2 r ) "  

Therefore the particular solution is 

Joe ]. I reA2z " iot 
p=Imaginary  p a r t / - - - ~ o  S',.., (1 + i o r )  ' 

i.e., 

P -  "cAsel/o o~=o~J~[ V ~ I  sin a) t -  o z  cos o t . ] v ~  

o r  

A2 ~ ~ j~, cos r o t cos r  cos o t sin r  
P= Vo 

where ~ =tan -1 o9~. 
Using the trigonometrical identities (e.g., Comrie, p. 380, 1955), 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

Therefore the full solution is 

z A2 e ~ j , ~  cos r sin(o t -  r 
Vo 

(B.10) 

[+o o ] 
"C 2 5 . 

P = Jo cos qSo, sin (o  t -  q~,~) + C1 e -T- �9 

Since, however, p = 0  when t=0, 

C1 - z A2 e ~Jo, cos q~,o sin r 
Vo 

Hence 

p =  A2 T 8 
Y', j~, cos 6o, [sin (o  t -  6o,) + sin r e-e-] .  

Vo oo 

Now the observed flow is 

dV V~ dp 
dt =LPNAIP-t ~ dt 

(B.11) 

(B.12) 

(B.13) 

where LpN is the endosmotic hydraulic permeability of the cell. 
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Hence 

/~ oo - t  dV z A2 . �9 . dt =LpNA~ ~ ~oS~ cos fro, [sm (cot-  ~ )  +sm ffo, e --r-] 

oo _t (B.141 
4 V~ezA2 [c 1 sin~bo, e-7--]. ~Vo 2 J'~ co c~ ~b'~ o ~ (co t -  q~'~)- coz 

Now 

fl A2 
L~,N- AI +A z Lp (B.15) 

from the definition of/~ [Eq. (20)] and Eq. (17) in the text. 
From Eqs. (B.15) and (B.4), 

Le~r A 1 zeA~ _ A 1A 2 (B.16) 
Vo A,  + A2 

and 
V1A2 co~ cos ~bco A1 A2 sin #5 o ,.~( 6 A )  A~A2sinc~o, 

Vo - (AI+A2+6A)  1 (B.17) - A1 +A2 (A~ +A2) 

where it is assumed that the cell is a right cylinder so that A oc V, and where 3A represents 
the area of the cell in the stopper. Hence Eq. (B.14) becomes 

dV = Ai A2 ~Jo  [cos ~b~, sin (co t -  #5o, ) + sin qS,o cos (co t - ~bo,)-] 
dt A l + A  2 ~ 

_, (BAS) 
 jos n oE os(o  - o - os oe l 

"" dt = AI+A2 J AI+A2 J'~176176176176176 ] (B.19) 

since 
j=~jo~sincot 

and in the limit as 
6A 

*0 
AI+A2 

dV = AI A2j  (B.20) 
dt A~+A2 " 

Appendix C 

The Solution of  the Equation Relating Subsequent Change in Turgor Pressure 

Owing to a Volume Flow in a Plant Cell Where the Recording Circuit 

Has a Finite Time Constant z2 = R C  

To solve Eq. (44) of the text, 
v �9 ~ �9 - - t  

dp' q_p___= eA _ _  ~ jocos~[sin(cot_~b,o)+sm~e--~-  ] (C.1) 
d t z2 Vo "r2 ,o=0 
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where p ' = 0  when t =0 ,  

and also 

Z = - -  (C.2) 
efl LvA 

z 2 =RC,  (C.3) 

r 2 being the time constant of the recording circuit. 
As already mentioned, the solution of the homogeneous part of Eq. (C.1) is 

- - t  

p ' =  C3 e "W (C.4) 

from Eq. (43) where C a is an arbitrary constant to be determined from the initial con- 
ditions. 

Rewriting Eq. (C.1) in exponentials 

dp' ~ p'____= l_ ~ (B,~e,(,ot_~,~,)+iDtoe@) (C.5) 
dt z2 T2 to=O 

where 

and 

Bto - e A z j ~ 1 7 6  Jto c0sf to (C.6) 
go fl  L .  ' 

D o = B o sin ~b o , (C.7) 

i = V - 1  

and where only the imaginary part of the particular solution will be required. Try a 
trial solution: 

- - t  

P' = E (Fto e i (tot-4,,o) + Go, e --7-) (C.8) 
to 

where Fto and Go are constants to be determined. 
Substituting (C.8) into (C.5), 

- - t  

~ f Gto e--7- "~ 1 ~  -t 
i o~ Fto e~ (Ot-r _ . ! + _ _ L W o e ~ ( O , - ~ ' o , ) + G t o e  - ~---~ 

T / T 2 to 

= l_~_E(Btoe'(~ +iDtoe-,-~-). 
T'2 to 

- - t  

Since this must be identically true for all t, the coefficients of e i(tot-r and e - '7  may be 
equated so that, 

Bto i z B to sin 49 o 
F ,o -  l + i o g z  2 and  G~, -  ( z - z 2 )  

Hence 
- - t  

, -- f ( 1 - i o z 2 ) e  i(tot-*'~ i zBos inr  " 

J 
-- t  

= ~ Bto ( ( 1 -  i cozz) [cos(o,~ t-q~o) + i sin(~ t -(9o)] iz Bo sin r e--;- } 
(1 +(o9%) 2) 4 (z _ % )  . 
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Taking only the imaginary part out, 

p' = ~ S~ fcos 0,o [cos O~ sin (a~ t -  r - sin 0~o cos (co t -  r -F 
t .  

i.e., 
- - t  

pt=~B~{cosOo~sin(cot-O~,-r z s i n r  } 2 7 _ 2 7 2  

where 
0~ = tan-  1 (o 272 " 

Therefore the full solution from Eqs. (C.4) and (C.9) is 

{ p'=Ca e-W~ + ~ B~ cosOo, sin(o~t-O~,-r 
oJ 

However p'----O when t ----0; hence, 

  o{oos0osin(0o+ o) 
and the solution becomes { - '  p'=~ B~o cosOo~[sin(o~t-O~,-r162 -W] 

"c sin r t" -_t :t  ] )  
4 e ~ - - e  T2 . 

T - -  T 2 

Differentiating Eq. (C.13) with respect to time, 

d p ' { [ y ,  cos0~ dt-co B'~ co cos(co t -  0o~- r 272 
- - t  - - t  [ -  j} 27 sinr e ~ F e ' 2  

272--27 T 272 

Substituting for B,o from Eq. (C.6), 

dp' J,o d t - ~ - ~ p  (a~c~176 COS ~bo~ c o s  (o9  t - -  0 ~  - -  ~o~)  

- t  

cos 0~ cos r sin (0~ + r e -;-Z 
272 

- t  - t  

-c~162176162176 272-27 / z2 e'z j}"  

Now both 

and 
z cos r = sin q~o 

o~ 272 cos 0,o = sin 0o, 

- - t  

27 s i n r  e - r -  

27 - -272  J " 

- t  

27 sin r e -7- } 
(27-272) ; 

J 
- t  

sin (0o~ + r e ~2 

(c.9) 

(c.lo) 

(c.11) 

(C.12) 

(C.13) 

(C.14) 

(cAs) 

(c.16) 

by the definitions of both ~b,~ and 0~. 
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Hence 

dp' J~' sinqSo ~co  0o~ at - E ~  l ~ cos(~t-0o-~o) 
~ t  

cos O~ cos qS~ sin (0o~ + ~o) e ~2 
"c 2 sin 4~o 

- - t  - - t  [- -]} "c cos qSo, e ,2 e * 

172 - - 7  "g2 "g 

- - t  

dp' 1 - - .  . ['cosO~, cos~b,oe * 
"" dt = ilL, ~ j o s l n ~ b o [  �9 _ c o s ( a ~ t - 0 o - $ , o ) - t  

to L T 9 
-t -t 

cos0~cos4o,  sin(0~,+qS~)e -W ~cos~b~e ~2 J 
�9 2 sin4~o % ( ~ 2 - * )  ; 

- - t  

�9 F cos 0~, cos qS~, e * 
. .  ap'd, = /~L,~ ~j~sinr L �9 cos(~ot-oo-4~,o)+ *2-* 

- - t  - - t  

c~176176176176176 e - ~ - - ~ m z 2 z  z cosqSo~ez2(z2_z) ~ ]"  (C.17) 

Using Eq. (C.15) and expanding, Eq. (C.17) becomes: 

- t  

COS ~b~ e -q-- d p ' _  1 ~ / "  " " [-c~ 
dt /~g, ~j~,sm~,o L �9 cos(~ot-0o-r *~-* 

- - t  - - t  

cosO~,z (c~ Oo c~ qSo- sin 0~ sin qS~') e-~-~t sin ~b~ e-~-~ogz2 z �9 cos qS, e z2 ( - - - ~ 2  - ~ *~ I 

using the identity cos 2 A---- 1 -- sin a A. 
Therefore, 

dp' _ 1 cos 0,o - '  
dt flLp ~ j ~ s i n q ~  [~{cos(ogt -O,o-$ ,o) -cos(O~+$o)e  "7-I-~ } 

-' }] cos~b~ {e 7 - e  ~t. 
-~ ( * 2 - * )  

(C.18) 

Appendix D 

A Calculation of the Volume Flow Caused by Local Concentration Enhancement 
in the Cell Wall During an Action Potential 

The differential equation considered in this appendix is somewhat similar to many 
of those considered by Carslaw and Jaeger (1959) in their excellent treatise on heat 
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conduction, and the solution follows closely their application of the Laplace transform 
method (see also Barry & Hope, 1969a). The equation is the same as Eq. (49) of the text. 

with the boundary condition 

02c 1 dc 1 Oc 
gr~--~ r O r = D  Ot (D.1) 

D ~ a=Jo~sincot. (D.2) 

Taking the Laplace transform of both equations results in 

d 2 c  - 1 d c  c- 
- - f ~ + T  dr =P-D- 

and 

(D.3) 

[d-c~ . r 

oo  

where ~(r) = ~ e-pte(r,  t)dt, wherep is such that its real part is sufficiently large so that 
0 

the integral converges�9 There is also the condition that ~ is finite as r--* 0. 

The solution satisfying Eq. (D.3) and the above boundary condition is 

where 
= AI o (q r) (D.5) 

q2 = P ;  (D.6) 

A is an arbitrary constant and I 0 is a hyperbolic Bessel function of order " 0 " .  

Hence at r = a, 

D ~ a = D A q l l ( q a ) = j o , - ~ - - ~  

so that 

(D.7) 

j,~o~ Io(qr) (D.8) 
-c= Dq(p2+co2) Ii(qa) 

and 11 is a hyperbolic Bessel function of order "1 ". 
The solution of this equation is given by the inversion transform (Carslaw & Jaeger, 

1961), namely 

J~o/u f a~ Io (# r) e '~t 
c =  2 h i  ~A~ ~ ( 2 2 " 1 - r 1 7 6  d2  (D.9) 

where the contour is as in Fig. 13 of Barry & Hope (1969a), and # and 2 are again 
written for q and p. 

Evaluation of this integral proceeds by using Cauchy's formula, and the solution 
merely involves calculating the residues at the various poles (Phillips, 1957; Jaeger, 1961) 
and multiplying by 2 hi. 

(i) At  2 = + i co and/~ = __ [ _  1 -b-) ' 
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The residues of the integrand of Eq. (D.9) for both poles are 

369 

o) ~ 
2i {" ~ .I s [ a ( i D )  ~] 2i ( - i - f f )  . ,s [a ( - i  D )  ~] 

(ii) At ). =0, the integrand of Eq. (D.9) may be expanded for ,~ small so that it 
becomes approximately 

[1 r2)~ \ ( 1  ~a2 ( 1 - - ~ 2  + 2D(1 +)~t+. . . )  ~ + - ~ - +  ...) ---~-D- + "") ...) 

o) a ,~ 

2D 
The coefficient of ~-~ is then - -  

coa 
by the residue formula (McLachlan, 1953, p. 54) the residue is 

Jo~ c~ Jo(s r) 
2 ~ a(D2 a~ +o~)Jo(a'a) 

where ~m is a zero of Jl(~m) and =m --a~n- 

Thus the full solution at r = a becomes 

and the residue is thus --.2J~ At ). = - D ~ n  2, 
oga 

'o[a(';--;]e~ 'o[a( ' )le ~ 
c(a )=  2jo,o~a +---~- 

+2~m j~,~oe -D~a2t (D.10) 
" 

Now (__i)~=i+~ and since the following relationships hold (see McLachlan, 1955, 
pp. 137-141) 

Io I-z (i) -+ ~] = Mo (z) e -+ i 0o(~) 

and 

then 
i• [z(i) • =M1 (z) e +'(~ , 

. . .  1o(Zi~)e ~~ lvlotz)e 
i ~ I(z i ~) M s (z) (D.11) 

where M o and M 1 are moduli of the kindred Bessel functions of order 0 and 1, and 
0 o and 01 are the corresponding arguments as defined in McLachlan (1955). Similarly 

io(zi-~:)e-lO~t Mo(z)e-i[~176 +~~ 
i -  ~;. 11 (z i -  ~) M 1 (z) (D. 12) 
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Adding Eqs. (D.11) and (D.12) and substituting back into Eq. (D.10), the solutioi 
becomes 

c(a)=2jo~{- 1 Mo[aVco/D ] 
coa + 2J/coD. M I [ a V ~ / D  ] 

�9 s i n  [mt+Oo(aVeolD)-Oi(al/colD)+�88 (D.13: 

co =' e -  Dct 2 t/a 2 

+-2 1 (D 2 } 
where em is a zero of Jl(~m). 

Hence the volume flow is given for a uni-univalent electrolyte as 

av = 2 a  Lp RTc(a) (D.14; 

with the value of c(a) obtained from Eq. (D.13). 
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